В первом случае изложенный ниже подход позволяет исследовать с учетом делителя мощности решетку, обеспечивающую сканирование в узком секторе углов при наличии нескольких побочных главных максимумов в области действительных углов, которые подавляются за счет узкой диаграммы направленности блока. Во втором случае можно исследовать влияние фидерной системы на характеристики ФАР с поэлементным фазированием.
На рис. 1 изображена обобщенная схема блочной ФАР проходного типа. Она включает в себя в общем случае блоки излучающих элементов 1, управляемые фазовращатели, предназначенные для фазирования излучателей блоков 2, делители мощности, создающие заданное амплитудно-фазовое распределение в пределах блока 3 и управляемые фазовращатели, обеспечивающие фазирование блоков 4. Для анализа такой структуры воспользуемся методами теории цепей СВЧ. Будем рассматривать излучающий блок и делитель мощности как многополюсники СВЧ, характеризуемые обобщенными матрицами рассеяния и соответственно (рис. 2). Матрицу рассеяния делителя мощности будем считать известной. Она может быть найдена как теоретическим, так и экспериментальным путем. Остановимся подробнее на обобщенной матрице рассеяния излучающего блока.
В подводящих фидерах излучателей будем учитывать типов волн, перенумеровав их в порядке возрастания собственных чисел. Некоторые из учитываемых гармоник будут распространяющимися, а остальные закритическими. Для определения матрицы рассеяния рассмотрим бесконечную плоскую ФАР с полубесконечными подводящими фидерами, фазируемую блоками. Поля падающих волн на входах излучателей такой решетки можно записать следующим образом:
(1) |
где m, n — индексы излучателя, a s, t — индексы блока в бесконечной решетке; m, n, s, t = (-∞,∞); — комплексная амплитуда гармоники , падающей на вход излучателя с индексами р, q внутри блока; М, N-количество излучателей в блоке пo осям x и y соответственно; , — сдвиги фаз между соседними блоками по соответствующим осям; — символ Кронекера.
Выделим в (1) периодический сомножитель
(2) |
Функция является периодической с периодами М и N по осям x и y соответственно, поэтому ее можно разложить в дискретный ряд Фурье
(3) |
где — коэффициенты разложения Фурье [3]. Подставив (3) в (2), получим
(4) |
где , .
Таким образом, представлено возбуждение регулярной блочной решетки в виде суммы возбуждений обычной бесконечной ФАР с дифференциальными сдвигами фаз между излучателями и по осям х и у соответственно. В соответствии с принципом суперпозиции, можно теперь получить решение граничной задачи для бесконечной регулярной блочной ФАР в виде суммы решений для обычной решетки, возбуждаемой спектром волн с коэффициентами .
Излучающий блок представим теперь как многополюсник, имеющий пар входных и две пары выходных клемм. Выходные клеммы этого монополюсника соответствуют гармоникам Флоке типа H и Е [1] с нулевыми индексами для парциального возбуждения k, l = 0 в разложении (4), которые определяют ДН блока в составе ФАР (группа входов А на рис. 2). Помимо упомянутых гармоник, распространяющимися могут быть и другие гармоники Флоке. Поэтому рассматриваемый многополюсник в общем случае является многополюсником с потерями. Входные клеммы многополюсника соответствуют гармоникам, распространяющимся в подводящих фидерах излучателей блока (группа входов В на рис. 2).
Используя решения граничной задачи для бесконечной плоской ФАР [1] для всех парциальных возбуждений в (4), можно определить обобщенную матрицу рассеяния . Действительно, пусть возбуждение блока определяется единственной волной номер , падающей на вход излучателя с индексами p, q внутри блока. Тогда, определив коэффициенты разложения в ряд Фурье для такого возбуждения и выполнив суммирование с этими коэффициентами комплексных амплитуд волн, распространяющихся в фидерах от излучателей, можно легко найти коэффициенты матрицы рассеяния, характеризующие группу входов В (рис. 2) многополюсника . Зная коэффициенты амплитуды гармоник Флоке типа Н и Е с нулевыми индексами для парциального возбуждения k=0, l=0 в (4), можно найти коэффициенты передачи из группы входов В в группу входов А.
Если ограничиться рассмотрением работы блочной ФАР только на передачу, то указанных выше коэффициентов матрицы рассеяния достаточно для определения характеристик согласования и излучения. Характеристики приемной ФАР могут быть найдены на основании принципа взаимности.