ГлавнаяКарта сайтаНапишите намПоиск по сайту
EDS-Soft
ElectroDynamic Systems Software ScientificTM
Radiolocation Systems ResearchTM






Ближняя зона антенны

Зона, ограниченная расстоянием до десяти длин волн, излучаемых антенной.

(из «Словаря терминов» нашего сайта)






Владимир Сергеевич Филиппов, профессор кафедры радиофизики, антенн и микроволновой техники МАИ (г. Москва), доктор технических наук.


Сергей Анатольевич Павлов, старший научный сотрудник кафедры радиофизики, антенн и микроволновой техники МАИ (г. Москва), кандидат технических наук.
Является одним из основателей и руководителей компании «Индустриальные электросистемы».
1/ 2все страницы

Исследование характеристик ФАР с учетом взаимодействия излучателей и свойств делителя мощности



Опубликовано: 08.02.2006
Оригинал: Изв. вузов MB и ССО СССР. Радиоэлектроника (Москва), 1984, №2, с.71...74
© В. С. Филиппов, С. А. Павлов, 1984. Все права защищены.
© EDS–Soft, 2006. Все права защищены.


Большинство работ [1, 2], посвященных исследованию бесконечных фазированных антенных решеток, основываются на предположении, что излучатели не взаимодействуют через делитель мощности. Ниже приведены методика и результаты исследования характеристик бесконечных блочных ФАР, излучающие элементы которых образуют регулярную структуру, с учетом влияния делителя мощности, обеспечивающего произвольное амплитудно-фазовое распределение внутри блока. Рассматриваются два случая возбуждения блочной ФАР. В первом случае управление лучом решетки осуществляется за счет фазирования блоков с неуправляемыми излучателями. Во втором одновременно с фазированием блоков производится фазирование элементов блоков в направлении главного максимума решетки, т. е. фазовращатели входят в состав блоков. Исследуется влияние как недиссипативных делителей, так и делителей, содержащих поглощающие элементы.

В первом случае изложенный ниже подход позволяет исследовать с учетом делителя мощности решетку, обеспечивающую сканирование в узком секторе углов при наличии нескольких побочных главных максимумов в области действительных углов, которые подавляются за счет узкой диаграммы направленности блока. Во втором случае можно исследовать влияние фидерной системы на характеристики ФАР с поэлементным фазированием.

На рис. 1 изображена обобщенная схема блочной ФАР проходного типа. Она включает в себя в общем случае блоки излучающих элементов 1, управляемые фазовращатели, предназначенные для фазирования излучателей блоков 2, делители мощности, создающие заданное амплитудно-фазовое распределение в пределах блока 3 и управляемые фазовращатели, обеспечивающие фазирование блоков 4. Для анализа такой структуры воспользуемся методами теории цепей СВЧ. Будем рассматривать излучающий блок и делитель мощности как многополюсники СВЧ, характеризуемые обобщенными матрицами рассеяния и соответственно (рис. 2). Матрицу рассеяния делителя мощности будем считать известной. Она может быть найдена как теоретическим, так и экспериментальным путем. Остановимся подробнее на обобщенной матрице рассеяния излучающего блока.

В подводящих фидерах излучателей будем учитывать типов волн, перенумеровав их в порядке возрастания собственных чисел. Некоторые из учитываемых гармоник будут распространяющимися, а остальные закритическими. Для определения матрицы рассеяния рассмотрим бесконечную плоскую ФАР с полубесконечными подводящими фидерами, фазируемую блоками. Поля падающих волн на входах излучателей такой решетки можно записать следующим образом:

(1)

где m, n — индексы излучателя, a s, t — индексы блока в бесконечной решетке; m, n, s, t = (-∞,∞); — комплексная амплитуда гармоники , падающей на вход излучателя с индексами р, q внутри блока; М, N-количество излучателей в блоке пo осям x и y соответственно; , — сдвиги фаз между соседними блоками по соответствующим осям; — символ Кронекера.

Выделим в (1) периодический сомножитель

(2)

Функция является периодической с периодами М и N по осям x и y соответственно, поэтому ее можно разложить в дискретный ряд Фурье

(3)

где — коэффициенты разложения Фурье [3]. Подставив (3) в (2), получим

(4)

где , .

Таким образом, представлено возбуждение регулярной блочной решетки в виде суммы возбуждений обычной бесконечной ФАР с дифференциальными сдвигами фаз между излучателями и по осям х и у соответственно. В соответствии с принципом суперпозиции, можно теперь получить решение граничной задачи для бесконечной регулярной блочной ФАР в виде суммы решений для обычной решетки, возбуждаемой спектром волн с коэффициентами .

Излучающий блок представим теперь как многополюсник, имеющий пар входных и две пары выходных клемм. Выходные клеммы этого монополюсника соответствуют гармоникам Флоке типа H и Е [1] с нулевыми индексами для парциального возбуждения k, l = 0 в разложении (4), которые определяют ДН блока в составе ФАР (группа входов А на рис. 2). Помимо упомянутых гармоник, распространяющимися могут быть и другие гармоники Флоке. Поэтому рассматриваемый многополюсник в общем случае является многополюсником с потерями. Входные клеммы многополюсника соответствуют гармоникам, распространяющимся в подводящих фидерах излучателей блока (группа входов В на рис. 2).

Используя решения граничной задачи для бесконечной плоской ФАР [1] для всех парциальных возбуждений в (4), можно определить обобщенную матрицу рассеяния . Действительно, пусть возбуждение блока определяется единственной волной номер , падающей на вход излучателя с индексами p, q внутри блока. Тогда, определив коэффициенты разложения в ряд Фурье для такого возбуждения и выполнив суммирование с этими коэффициентами комплексных амплитуд волн, распространяющихся в фидерах от излучателей, можно легко найти коэффициенты матрицы рассеяния, характеризующие группу входов В (рис. 2) многополюсника . Зная коэффициенты амплитуды гармоник Флоке типа Н и Е с нулевыми индексами для парциального возбуждения k=0, l=0 в (4), можно найти коэффициенты передачи из группы входов В в группу входов А.

Если ограничиться рассмотрением работы блочной ФАР только на передачу, то указанных выше коэффициентов матрицы рассеяния достаточно для определения характеристик согласования и излучения. Характеристики приемной ФАР могут быть найдены на основании принципа взаимности.


1/ 2все страницы

Использованная литература

1. Амитей Н., Галиндо В., By Ч. Теория и анализ фазированных антенных решеток.— М. : Мир, 1974.— 455 с.
2. Мейлукс Р. Дж. Теория и техника фазированных антенных решеток.— ТИИЭР, 1982, т. 7, № 3, с. 5...62.
3. Корн Г., Корн Т. Справочник по математике.— М.: Наука, 1970.— 831 с.
4. Сазонов Д.М., Гридин А.Н., Мишустин Б.А. Устройства СВЧ.— М. : Высшая школа, 1981.— 295 с.
5. Машковцев Б.М., Цибизов К.Н., Емелин Б.Ф. Теория волноводов.— М.–Л. : Наука, 1966.— 351 с.

Статьи за 2006 год

Все статьи

GuidesArray Coaxial 0.1.2

GuidesArray Coaxial™ используется инженерами для проектирования и исследования характеристик плоских периодических фазированных антенных решеток коаксиальных волноводов.


Подписка



Изменение параметров подписки


 




 
 
EDS-Soft

© 2002-2024 | EDS-Soft
Контакты | Правовая информация | Поиск | Карта сайта

© дизайн сайта | Андрей Азаров